Search
política de privacidade MA Hospitalar

Ao integrar dados do PSI ao monitoramento tradicional, como frequência cardíaca e pressão arterial, os anestesiologistas podem ajustar a administração de anestésicos em tempo real, minimizando riscos de complicações e melhorando os resultados pós-operatórios. Essa abordagem holística promove um cuidado mais seguro e eficaz durante a anestesia.

O Patient State Index (PSI) é uma ferramenta de monitoramento cerebral desenvolvida para medir a profundidade da anestesia através da análise de sinais eletroencefalográficos (EEG). O PSI utiliza um algoritmo avançado que processa dados do EEG para calcular um índice numérico, que reflete o nível de consciência do paciente de forma contínua. Esse índice, que varia de 0 a 100, auxilia os anestesiologistas a avaliar o grau de sedação e a ajustar as doses anestésicas conforme necessário.

Uma das principais vantagens do PSI é sua capacidade de fornecer uma avaliação mais específica em determinados contextos clínicos, como em cirurgias complexas ou em pacientes com respostas fisiológicas atípicas aos anestésicos. 

Além disso, o monitoramento contínuo do índice permite uma resposta mais precisa à variação do estado de consciência do paciente, reduzindo o risco de sobredosagem ou despertar intraoperatório.

Como o PSI funciona?

O Patient State Index (PSI) opera em três etapas principais. De forma resumida, são elas:

Coleta de dados EEG: o dispositivo realiza a captura dos sinais elétricos gerados pela atividade cerebral, utilizando eletrodos colocados na superfície do couro cabeludo.

Processamento dos dados: um algoritmo avançado é empregado para filtrar e analisar os dados do EEG, identificando padrões que são relevantes para a avaliação da consciência e da profundidade da anestesia.

Cálculo do índice: com base na análise dos dados filtrados, o sistema calcula um índice que reflete a profundidade da anestesia. Esse índice é fundamental para que os profissionais de saúde possam realizar ajustes mais precisos nas doses anestésicas, garantindo uma sedação adequada e segura

Conheça o Sedline: alta performance e análise contínua

O Monitor Sedline oferece uma análise contínua do estado cerebral por meio de uma abordagem baseada em dados. O Sedline não apenas calcula o PSI, mas também fornece informações adicionais sobre a atividade cerebral, como a hipoxemia e a hipoventilação, permitindo uma avaliação mais completa da profundidade anestésica. 

A interface intuitiva do Sedline apresenta as informações de forma clara e acessível, facilitando a interpretação rápida e a tomada de decisões.  Além do PSI, o monitor oferece um conjunto abrangente de indicadores, incluindo o SR (Suppression Ratio), matriz espectral (DAS), assimetria da atividade cerebral, SEF (frequência de borda espectral) e eletromiografia (EMG).

Esses elementos não apenas refinam a condução da anestesia, mas possibilitam uma titulação precisa dos anestésicos, reduzindo significativamente complicações.

A utilização de sensores bilaterais é um marco no aprimoramento da monitorização.Essa abordagem proporciona um filtro eficaz para artefatos e também aumenta substancialmente a confiabilidade da avaliação, garantindo uma abordagem mais segura e precisa.

Por que a monitorização de pacientes críticos é tão importante? 

A complexidade das condições de saúde desses pacientes exige uma vigilância constante, pois pequenas alterações em seus parâmetros vitais podem indicar a deterioração de seu estado clínico. Nesse cenário, a utilização de ferramentas avançadas de monitoramento, como o Patient State Index (PSI), se torna ainda mais relevante.

Como comentamos, o PSI, que avalia a atividade cerebral e fornece uma representação quantitativa da profundidade anestésica ou do estado de consciência do paciente, permite que os profissionais de saúde tomem decisões informadas e rápidas. 

Essa ferramenta é particularmente importante em pacientes críticos que estão sob anestesia ou sedação, onde a variação do nível de consciência pode ser um indicador chave do bem-estar do paciente. Por exemplo, um PSI baixo pode sinalizar que o paciente está se aproximando de um estado de consciência que poderia levar a uma resposta fisiológica adversa, como hipertensão ou taquicardia, exigindo uma intervenção imediata.

Como enfatiza o artigo científico: “A sedação e seus efeitos na segurança do paciente: revisão sistematizada da literatura para um protocolo clínico’, publicado no Journal of Specialized Nursing Care:

“Os pacientes internados na UTI encontram-se em uma situação difícil e delicada, em grande sofrimento e ansiedade. Estão mais graves e instáveis, às vezes, pioram rápido e precisam de uma intervenção rápida. São doentes críticos, com disfunções orgânicas, precisando de cuidados específicos. Na maioria das vezes, os pacientes são muito vulneráveis, especialmente a qualquer tipo de contaminação. 

Estas disfunções demandam utilização de tecnologia dura no cuidado, o que acaba acarretando dor em muitos pacientes, porém muitas vezes estes não conseguem demonstrá-la de maneira clara, o que acaba dificultando a equipe uma avaliação correta, devido aos níveis de sedação e analgesia em excesso”

Portanto, a monitorização contínua e a utilização do PSI contribuem para uma gestão mais personalizada da anestesia, permitindo que os anestesiologistas ajustem os fármacos de maneira precisa, minimizando a quantidade de anestésicos administrados e, consequentemente, os efeitos colaterais.

Quais são os avanços mais significativos no monitoramento do PSI?

O monitoramento do PSI tem se beneficiado de significativos avanços tecnológicos na monitorização, que têm transformado o trabalho dos anestesistas. 

Esses desenvolvimentos não apenas melhoraram a precisão do monitoramento, mas também otimizam a integração e a análise dos dados obtidos durante os procedimentos.

Dispositivos de monitoramento avançados

Uma das inovações mais notáveis é o uso de dispositivos de monitoramento avançados, com o SedLine, que incorporam algoritmos sofisticados para a análise em tempo real do eletroencefalograma (EEG). Esses dispositivos são capazes de filtrar ruídos e artefatos, proporcionando uma leitura mais confiável do estado cerebral do paciente.

Com a capacidade de apresentar dados em gráficos dinâmicos e fornecer alertas em tempo real, esses monitores permitem que os anestesistas façam ajustes imediatos na administração de agentes anestésicos, promovendo um cuidado mais responsivo e individualizado.

Conectividade

A integração de tecnologias digitais e plataformas de gerenciamento de dados tem possibilitado uma visão mais abrangente do estado do paciente. 

A conectividade entre dispositivos de monitoramento e sistemas eletrônicos de registro de saúde permite o compartilhamento instantâneo de informações, facilitando a tomada de decisões clínicas e melhorando a comunicação entre a equipe médica. 

Inteligência artificial

A utilização de inteligência artificial (IA) e aprendizado de máquina (machine learning) têm o potencial de revolucionar a interpretação dos dados.

Essas tecnologias podem analisar grandes volumes de informações para identificar padrões e prever respostas anestésicas, permitindo uma gestão mais proativa da profundidade anestésica. À medida que essas ferramentas se tornam mais acessíveis e confiáveis, espera-se que desempenhem um papel fundamental na prática anestésica futura.

A importância da padronização, integração de dados e documentação

A padronização no monitoramento da profundidade anestésica é fundamental para reduzir a variabilidade entre os anestesistas, já que dispositivos de monitoramento oferecem referências objetivas e consistentes. 

Essa uniformidade no cuidado não só melhora a qualidade da anestesia, mas também contribui para melhores desfechos clínicos, especialmente em ambientes complexos, como cirurgias de grande porte ou em pacientes com condições médicas desafiadoras.

A documentação automática permite que informações vitais sobre a anestesia sejam registradas de maneira sistemática e acessível, garantindo que toda a equipe cirúrgica tenha acesso a dados atualizados e precisos. 

Isso não apenas aumenta a eficiência operacional, mas também promove uma comunicação mais eficaz entre os membros da equipe, permitindo um acompanhamento rigoroso do estado do paciente ao longo de todo o procedimento. 

Saiba mais: leia o Guia Básico do Sedline e eleve o padrão da monitorização anestésica.

Tecnologia: um pilar fundamental para a segurança anestésica 

A tecnologia não apenas melhora a segurança durante os procedimentos anestésicos, mas também oferece uma plataforma para inovação contínua na prática médica. 

À medida que novas ferramentas e algoritmos se tornam disponíveis, a expectativa é de que a segurança anestésica continue a evoluir, resultando em uma experiência mais tranquila e confiável para pacientes e profissionais de saúde. 

Em um cenário onde a segurança é a prioridade máxima, a tecnologia se apresenta como um aliado indispensável na busca por excelência no cuidado anestésico.

A monitorização de pacientes críticos, portanto, vai além da simples observação de sinais vitais. Ela envolve uma análise integrada e contínua do estado do paciente, em que ferramentas como o PSI desempenham um papel crucial. 

Com a capacidade de detectar alterações sutis na atividade cerebral, o PSI não apenas melhora a segurança e a eficácia dos cuidados anestésicos, mas também fornece uma base sólida para a tomada de decisões clínicas, permitindo que os profissionais de saúde respondam rapidamente a mudanças críticas na condição do paciente. Essa abordagem holística e centrada no paciente é essencial para garantir os melhores resultados possíveis em contextos de alta complexidade.

Este artigo foi útil? Para saber mais sobre o assunto, baixe o nosso material exclusivo, é um guia avançado sobre o Sedline e seus benefícios para quem busca aprimorar a monitorização anestésica. Nele você vai se informar sobre técnicas avançadas de monitorização, prevenção de eventos adversos, interpretação avançada de dados e muito mais! 

Se você é um profissional da saúde e deseja aprimorar a segurança e a eficácia nos procedimentos anestésicos, conheça a MA Hospitalar. Oferecemos soluções avançadas para monitoramento e gestão de anestesia, garantindo dados precisos e em tempo real. Entre em contato conosco e descubra como podemos transformar sua prática anestésica e elevar o padrão de cuidado em sua instituição!

A segurança é uma prioridade fundamental em qualquer ambiente de cuidados intensivos e anestesia. Quando se trata da administração de fluidos e medicamentos, a precisão é imperativa para evitar erros que possam comprometer a saúde do paciente. 

Como se sabe, um equipamento fundamental na administração intravenosa é a bomba de infusão. Cada vez mais tecnológica, ela permite a administração controlada de medicamentos, reduz erros e auxilia na eficácia do tratamento. 

Mas, como garantir os princípios de uso desse aparelho e habilitar a equipe na sua utilização?  Este artigo explora todas essas questões, e mostra como a escolha do melhor equipamento pode influenciar neste processo. Boa leitura! 

Quais são as diretrizes para o uso da bomba de infusão?

O Institute for Safe Medication Practices (ISMP), referência em segurança do paciente, fornece diretrizes e recomendações detalhadas para o uso seguro de bombas de infusão, com o objetivo de minimizar riscos e melhorar a segurança do paciente. 

Algumas delas, publicadas em 2019, estão indicadas abaixo: 

1. Escolha e avaliação do equipamento

Opte por bombas de infusão que possuam recursos de segurança avançados, como alarmes para detecção de bolhas de ar, obstruções e sobrecarga de pressão. Esses recursos ajudam a identificar problemas rapidamente e a evitar complicações.

Certifique-se de que a bomba é compatível com todos os tipos de medicamentos e fluidos que serão administrados. Verifique se a bomba pode manusear diferentes viscosidades e concentrações sem comprometer a precisão.

2.Configuração e programação adequadas

Sempre realize uma verificação cruzada das configurações da bomba com outra pessoa da equipe antes de iniciar a infusão. Isso ajuda a garantir que os parâmetros inseridos estejam corretos e correspondam às ordens médicas.

Insira cuidadosamente todos os parâmetros de infusão, incluindo a taxa de infusão, volume total e tempo de administração. Utilize recursos de ajuda e tutoriais disponíveis na bomba, se necessário.

3. Monitoramento contínuo

Monitore o paciente constantemente para identificar qualquer sinal de reação adversa, infiltração ou extravasamento. Acompanhe a resposta do paciente ao medicamento e ajuste a infusão conforme necessário.

4. Gerenciamento de alarmes e interrupções

A equipe precisa estar preparada para responder imediatamente a qualquer alarme da bomba.  Eles também precisam entender o significado dos diferentes tipos de alarmes e tomar as ações apropriadas para corrigir o problema.

5. Treinamento e educação da equipe

Proporcione treinamento extensivo para todos os membros da equipe sobre a operação da bomba de infusão, incluindo configuração, programação e resposta a alarmes. Realize simulações e cenários de emergência para preparar a equipe para situações imprevistas.

6. Documentação e análise de eventos

A equipe deve documentar todas as informações relevantes sobre a administração de medicamentos, incluindo configurações da bomba, ajustes realizados e qualquer problema encontrado. A documentação completa é essencial para a revisão e análise de eventos.

7. Manutenção regular

A manutenção regular e calibração da bomba de infusão devem ser feitas conforme as recomendações do fabricante. A instituição hospitalar deve se certificar de que a bomba está funcionando corretamente antes de cada uso.

Por que os erros de medicação são tão graves?

O National Coordinating Council for Medication Error Reporting and Prevention define erro de medicação como “qualquer evento evitável que possa resultar em uso inadequado de medicamentos ou causar danos ao paciente enquanto o medicamento está sob responsabilidade do profissional de saúde, do paciente ou do consumidor.”

A questão é mundial. Dados divulgados em 2019 pelo Boletim de Farmaco Vigilância da Anvisa reforçam que, em média, os erros de medicação ocorrem em 5,7% das administrações de medicamentos a pacientes hospitalizados, podendo chegar a aproximadamente 56% nos estudos em que os pacientes são monitorados mais cuidadosamente.

Mas esse cenário não se limita às instituições de saúde. Nos EUA, estima-se que os erros de medicação, feitos em hospitais, profissionais ou pelo próprio paciente, causam pelo menos uma morte todos os dias e danos a aproximadamente 1,3 milhão de pessoas anualmente. 

Profissional de saúde leva uma bomba de infusão nas mãos.

O que a sua equipe sabe sobre gerenciamento de riscos?

A gestão de riscos é crucial para garantir a segurança do paciente, portanto, é fundamental na utilização da bomba de infusão. O artigo “Usabilidade de bombas de infusão e segurança do paciente na terapia intensiva”, divulgado na Revista Enfermagem em Foco, 2021, reitera:

“Um estudo realizado com profissionais de enfermagem no Brasil constatou que a falta de treinamento era o fator principal na repercussão direta do déficit de conhecimento e no desempenho adequado das técnicas que utilizam as bombas de infusão como ferramenta, além de não usufruírem dos benefícios destas tecnologias em sua totalidade.”

A questão é que a equipe médica deve ter a capacidade de reconhecer situações que podem levar a erros ou complicações, como falhas, sobredosagem ou problemas com o processo de atendimento. E, naturalmente, ter o conhecimento necessário para manusear o equipamento.

É importante implementar medidas preventivas e corretivas. Isso envolve a aplicação de protocolos estabelecidos, como a correta programação e monitoramento de bombas de infusão, e a realização de ajustes imediatos.

Contar com equipamentos tecnológicos e intuitivos pode desempenhar um papel significativo nesse cenário. Os dispositivos que são referência no mercado  vêm equipados com sinalizações e  interfaces intuitivas que facilitam a configuração e a programação..

Como escolher a melhor bomba de infusão para sua instituição?

Ao escolher a melhor bomba de infusão, é fundamental considerar vários critérios para garantir que o equipamento atenda às suas necessidades e proporcione segurança e eficácia. Dentre eles:

Pesquise marcas reconhecidas e inovadoras

Opte por bombas de infusão fabricadas por marcas conhecidas e respeitadas no setor de saúde. Essas empresas frequentemente investem em pesquisa e desenvolvimento para oferecer equipamentos de ponta que incorporam as mais recentes inovações tecnológicas e melhorias de segurança.

Avalie a tecnologia intuitiva

Escolha modelos que possuam interfaces intuitivas e fáceis de usar. Equipamentos com telas digitais claras, menus simplificados e sistemas integrados ajudam a minimizar erros humanos e facilitam a programação e a operação.

Considere os recursos de segurança

Verifique se a bomba de infusão oferece recursos avançados de segurança, como alarmes para detectar bolhas de ar, obstruções e variações na taxa de infusão. Esses recursos são cruciais para prevenir complicações e garantir a administração precisa e segura de medicamentos.

Escolher uma bomba de infusão que combina inovação tecnológica, uma interface intuitiva e recursos de segurança avançados pode melhorar significativamente a eficácia do tratamento e a segurança do paciente em sua instituição. 

Avaliar cuidadosamente essas características ajudará a garantir que o equipamento atenda às suas necessidades e ofereça um desempenho confiável e seguro.

Conte com a MA Hospitalar para a escolha correta

A MA Hospitalar possui uma sólida reputação no mercado, e oferece equipamentos de alta qualidade que atendem aos mais rigorosos padrões de segurança e inovação tecnológica. 

Com uma ampla gama de opções de bombas de infusão, a MA Hospitalar se destaca por fornecer produtos de marcas reconhecidas e inovadoras, garantindo que sua instituição tenha acesso às tecnologias mais avançadas e intuitivas. 

Dentre nossos equipamentos, vale mencionar:

Bomba de Infusão Alvo Controle para Anestesia TCI Modelo HP Medcaptain

Este modelo é projetado especificamente para terapias de Controle de Infusão Alvo (TCI), permite a administração precisa de medicamentos anestésicos com base em algoritmos avançados que ajustam automaticamente a dosagem. 

Com seu design robusto, é a solução ideal para ambientes de anestesia, pois ajuda a otimizar o gerenciamento de medicação e a melhorar a segurança e o conforto do paciente.

Bomba de Infusão com Equipo Universal Modelo SYS6010 Medcaptain

É uma solução versátil e eficiente para a administração precisa de fluidos e medicamentos. Este modelo é projetado para ser compatível com uma ampla variedade de equipamentos, o que proporciona flexibilidade e conveniência para diferentes tipos de infusão, desde soluções intravenosas até medicamentos complexos.

Destaca-se por sua interface intuitiva, que facilita a configuração e o monitoramento das infusões, além de seus recursos avançados de segurança, como alarmes para detectar obstruções e variações no fluxo, garantindo uma administração segura e confiável. 

Este artigo foi útil? Conheça a loja virtual da MA Hospitalar e encontre não apenas bombas de infusão mas também  outros equipamentos médicos de alta qualidade e referência. 

Devido às particularidades fisiológicas das crianças, como o metabolismo acelerado, a imaturidade de órgãos e a maior sensibilidade, a anestesia pediátrica apresenta desafios únicos. Essas características tornam o monitoramento contínuo essencial para garantir a segurança e eficácia dos procedimentos anestésicos. 

Além dos métodos tradicionais de monitoramento hemodinâmico e ventilatório, tecnologias emergentes, como o Monitor de Função Cerebral, estão revolucionando a anestesiologia. São inovações que proporcionam, de forma mais clara, uma visão do nível de sedação e da atividade cerebral dos pacientes.

Este artigo explora a importância de um monitoramento adequado e mostra como o Monitor de Função Cerebral pode aprimorar significativamente o cuidado anestésico em crianças, de forma a reduzir riscos e trazer melhores soluções clínicas. Saiba mais!

Qual a importância da avaliação pré-anestésica?

A avaliação pré-anestésica permite a identificação precoce de fatores de risco e a preparação de um plano anestésico personalizado. A fisiologia infantil se  difere significativamente dos adultos, o que torna esse processo ainda mais importante.

É uma etapa que envolve uma análise minuciosa de vários aspectos do paciente, como:

  • Histórico médico: identificar comorbidades (doenças cardíacas, pulmonares, neurológicas) é essencial para adaptar o manejo anestésico.
  • Histórico anestésico: a verificação de eventos adversos anteriores, como reações alérgicas ou dificuldades na intubação.
  • Idade e peso: crianças de diferentes faixas etárias apresentam respostas variadas aos anestésicos, devido ao metabolismo imaturo e características fisiológicas em desenvolvimento.

Com base nas informações colhidas, o anestesiologista pode ajustar os tipos de anestésicos, a dosagem e as técnicas que serão utilizadas, como a intubação ou ventilação assistida. Isso reduz a margem de erro e melhora o controle intraoperatório.

Comunicação com os responsáveis

Outro ponto crucial da avaliação pré-anestésica é a comunicação clara com os pais ou responsáveis. Explicar os riscos, procedimentos e expectativas ajuda a diminuir a ansiedade familiar e a garantir a adesão ao tratamento pós-operatório, além de coletar informações adicionais relevantes sobre o comportamento da criança ou histórico médico familiar.

A importância do monitoramento na anestesia pediátrica

O risco de complicações durante a anestesia pediátrica é maior devido às diferenças na anatomia e fisiologia infantil, como maior variabilidade na resposta aos anestésicos. 

Alterações no débito cardíaco, frequência respiratória e metabolismo de fármacos são comuns de acontecer. Por isso, falhas no monitoramento podem resultar em hipoxemia, arritmias, ou mesmo lesões neurológicas.

A precisão no monitoramento é fundamental para evitar complicações graves e assegurar que a profundidade anestésica esteja adequada ao procedimento. Um monitoramento contínuo e detalhado permite ao anestesiologista reagir rapidamente a alterações hemodinâmicas e ventilatórias, minimizando os riscos para o paciente.

Tecnologias emergentes no monitoramento da anestesia

O Monitor de Função Cerebral é uma tecnologia que tem ganhado destaque na anestesia pediátrica. É um dispositivo que tem a capacidade de fornecer dados objetivos sobre o nível de consciência do paciente durante o procedimento cirúrgico. 

Esse monitor utiliza eletroencefalograma (EEG) para medir e interpretar a atividade elétrica do cérebro. Ele analisa a profundidade da anestesia em tempo real, ajudando o anestesiologista a ajustar a dosagem dos fármacos para garantir que o paciente esteja adequadamente sedado, sem risco de sobredosagem ou subdosagem.

O dispositivo capta os sinais elétricos cerebrais por meio de eletrodos.  Esses sinais são convertidos em índices numéricos que indicam o nível de sedação e a resposta cerebral aos anestésicos. Com isso, o Monitor de Função Cerebral permite uma avaliação precisa do estado de consciência, facilitando a tomada de decisões intraoperatórias.

Benefícios do Monitor de Função Cerebral na prática clínica

A utilização do Monitor de Função Cerebral na prática clínica oferece diversos benefícios que impactam diretamente a segurança e a qualidade do cuidado anestésico. Destacados os principais ganhos clínicos:

1. Redução das complicações associadas à profundidade inadequada da anestesia

Uma das maiores preocupações em anestesia pediátrica é a dificuldade de ajustar a profundidade anestésica de maneira precisa. Se o paciente for exposto a uma anestesia superficial, pode ocorrer o despertar intraoperatório, um evento traumático e perigoso. 

Por outro lado, a anestesia profunda em excesso pode resultar em depressão respiratória e cardiovascular, além de complicações no pós-operatório. O Monitor de Função Cerebral reduz esses riscos ao fornecer informações objetivas e em tempo real sobre o nível de sedação, permitindo ajustes mais finos e imediatos nas dosagens anestésicas.

2. Proporciona uma visão mais clara sobre o estado consciente do paciente durante procedimentos cirúrgicos

Um dos grandes diferenciais do Monitor de Função Cerebral é a sua capacidade de monitorar diretamente a atividade cerebral do paciente, gerando um índice que reflete o nível de consciência. Isso é particularmente útil em pediatria, onde as respostas anestésicas são mais imprevisíveis. 

A monitorização do estado consciente durante a cirurgia garante que o paciente permaneça adequadamente sedado, evitando tanto a subdosagem quanto a sobredosagem, o que otimiza o cuidado intraoperatório.

3. Maior precisão na dosagem de anestésicos

O Monitor de Função Cerebral permite que o anestesiologista ajuste a dosagem dos anestésicos com maior precisão, levando em consideração as variações individuais na resposta cerebral. 

Essa precisão reduz o uso excessivo de fármacos, o que diminui o tempo de recuperação do paciente, além de minimizar os efeitos colaterais relacionados à anestesia prolongada, como náuseas, vômitos e hipotensão.

4. Melhora nos desfechos pós-operatórios

Com a dosagem de anestésicos mais controlada, o paciente tende a apresentar uma recuperação mais rápida e segura no período pós-operatório. 

O monitor ajuda a evitar tanto a ressurgência anestésica tardia quanto a ocorrência de estados de hiperexcitação, o que proporciona uma recuperação mais estável, com menores complicações e um retorno mais eficiente à consciência plena.

5. Facilita o treinamento e o desenvolvimento de protocolos clínicos

O uso do monitor também tem valor educacional, permitindo que médicos e enfermeiros analisem as respostas cerebrais às diferentes estratégias anestésicas. Isso facilita a criação de protocolos mais precisos para diferentes tipos de cirurgia e condições clínicas. 

A análise dos dados obtidos em tempo real pode ser utilizada para melhorar a formação dos profissionais de saúde, além de orientar pesquisas sobre novas abordagens anestésicas.

6. Aumento da segurança do paciente

Por fornecer informações contínuas e em tempo real sobre o nível de sedação e a resposta cerebral, o Monitor de Função Cerebral aumenta consideravelmente a segurança durante os procedimentos cirúrgicos. A capacidade de detectar alterações súbitas na profundidade anestésica possibilita intervenções mais rápidas e eficazes, reduzindo o risco de complicações graves.

O SEDLINE, um monitor derivado do eletroencefalograma (EEG), é um exemplo de dispositivo que revolucionou a avaliação do grau de sedação e hipnose em anestesias gerais.

Na base do SEDLINE temos o PSI (Patient State Index), um parâmetro extremamente importante que traduz a atividade cerebral em uma escala compreensível. 

Além do PSI, o monitor conta também com um conjunto de outros indicadores importantes, como o SR (Suppression Ratio), matriz espectral (DAS), assimetria da atividade cerebral, SEF (frequência de borda espectral) e eletromiografia (EMG).

Saiba mais: baixe o Guia básico do Sedline e o Guia Avançado e veja como elevar o padrão da monitorização anestésica. 

Implementação prática do Monitor de Função Cerebral na anestesia pediátrica

A adoção do Monitor de Função Cerebral na anestesia pediátrica requer a implementação de protocolos específicos, adaptados para as características dos pacientes jovens. 

É essencial que a equipe clínica seja treinada para entender as variações nos índices do monitor, além de ser capacitada para interpretar os dados de forma rápida e eficaz. 

A seguir estão os principais aspectos que devem ser cobertos no treinamento:

Familiarização com o funcionamento do monitor

A equipe precisa aprender a instalar o monitor corretamente, garantindo que os eletrodos sejam posicionados de forma adequada no paciente para captar os sinais cerebrais com precisão. Os profissionais devem saber ligar, calibrar e interpretar as leituras do monitor, além de solucionar problemas técnicos que possam surgir durante o uso.

Interpretação dos dados gerados pelo monitor

A equipe precisa interpretar corretamente os valores gerados pelo monitor, entendendo o que cada índice representa em termos de sedação e profundidade anestésica. Em situações onde há mudanças nos níveis de consciência, os profissionais devem estar aptos a identificar padrões que possam indicar anestesia inadequada, permitindo ajustes rápidos nas dosagens.

Integração dos dados do monitor com outros parâmetros clínicos

O monitor deve ser utilizado em conjunto com outros sistemas de monitoramento, como controle da ventilação, oximetria de pulso e monitorização hemodinâmica. A equipe deve ser capaz de integrar os dados fornecidos pelo monitor com outros parâmetros fisiológicos, garantindo uma visão abrangente do estado do paciente.

Simulações práticas

Simulações de diferentes tipos de procedimentos cirúrgicos pediátricos, com variações na resposta anestésica, ajudam os profissionais a reagir de forma eficiente em situações reais. A equipe deve passar por simulações onde problemas técnicos ou falhas no monitor são simulados, garantindo que estejam preparados para lidar com essas situações.

Treinamento contínuo e atualizações

Sessões de reciclagem são importantes para que a equipe se mantenha atualizada em relação a novas funcionalidades do monitor e mudanças nas diretrizes clínicas. Sempre que houver uma atualização no software ou hardware do monitor, a equipe deve passar por treinamentos para se familiarizar com as novas características do dispositivo.

Treinamento multidisciplinar

Além dos anestesiologistas, é importante que outros membros da equipe multidisciplinar que interagem com o paciente durante o procedimento também estejam treinados, como enfermeiros, cirurgiões e demais médicos.

Como vimos, aprimorar o monitoramento na anestesia pediátrica é crucial para garantir a segurança e eficácia dos procedimentos cirúrgicos. A introdução de tecnologias como o Monitor de Função Cerebral oferece uma nova camada de segurança ao permitir uma avaliação precisa da profundidade anestésica em crianças. 

Conheça o SEDLINE e os benefícios que ele pode trazer à anestesia pediátrica. Este monitor está disponível na MA Hospitalar, fale conosco e peça o seu orçamento!

A monitorização na anestesia é crucial para a manutenção da homeostase e segurança do paciente, fornecendo dados em tempo real que permitem a avaliação contínua dos parâmetros hemodinâmicos e respiratórios. A vigilância depende de variáveis como frequência cardíaca, pressão arterial e, sem dúvidas, pode ser aprimorada com o suporte de aparelhos.  

Com a crescente complexidade dos procedimentos e a diversidade dos perfis de pacientes, a capacidade de monitorar continuamente e de maneira precisa os parâmetros fisiológicos durante a anestesia se tornou essencial. 

Esta prática não apenas permite a detecção precoce de alterações hemodinâmicas e respiratórias, mas também possibilita a adaptação em tempo real das intervenções anestésicas, promovendo a estabilidade do paciente e a prevenção de complicações. 

O avanço das tecnologias de monitoramento, como os sistemas de vigilância multiparamétrica e a integração de dados em tempo real, tem transformado a abordagem anestésica, proporcionando uma visão mais detalhada e abrangente do estado clínico do paciente. Continue a leitura para saber mais sobre o assunto. 

O que é monitorização da anestesia?

A monitorização da anestesia é um processo contínuo cujo objetivo é garantir a segurança do paciente durante um procedimento cirúrgico. Outro objetivo é garantir que o paciente não acorde ou volte a sentir os movimentos e, assim, não se mexa ou fique agitado.

Para que tal monitoração aconteça, é preciso que a equipe técnica verifique constantemente os sinais vitais do paciente, permitindo que o anestesista identifique e corrija rapidamente qualquer alteração que possa colocá-lo em risco.

Além disso, os equipamentos na monitorização da anestesia também devem ser verificados com frequência, pois são eles que indicarão se está tudo correndo como o esperado. Vale lembrar que eles também precisam ser calibrados com frequência para garantir que estejam funcionando corretamente e evitar erros que podem ser graves e até fatais.

Entre as vantagens de monitorar o processo de anestesia está:

  • Identificar precocemente complicações;
  • Ajustar a anestesia (quantidade de produtos anestésicos e tipo de medicamento mais adequado para cada paciente);
  • Aumentar a segurança do paciente (evitando medicamentos que possam causar alguma alergia ou que interajam mal com outros remédios consumidos pelo paciente)

Vale lembrar que existem diferentes tipos de monitorização na anestesia para avaliar as funções vitais dos pacientes. As principais são: 

  • monitorização eletrocardiográfica (ECG) que permite que o anestesiologista; acompanhe a atividade elétrica do coração e note anormalidades do ritmo cardíaco,
  • a monitorização da pressão arterial e da frequência cardíaca;
  • a monitorização da oximetria de pulso, que acompanha o oxigênio no sangue;
  • a capnografia, que monitore a quantidade de dióxido de carbono (CO2).

Como fazer a monitorização de forma mais eficiente?

A importância da monitorização da anestesia é tamanha que este processo deve ser realizado antes, durante e depois do processo cirúrgico e/ou médico, passando pelas consultas de risco cirúrgico, avaliação pré-anestésica e monitoração pós procedimento.

Para minimizar possíveis complicações, o histórico de saúde do paciente deve ser analisado com cuidado, identificando fatores de riscos como diabetes, doenças cardíacas, pulmonares e renais, entre outras.

Já falamos aqui, mas é preciso reforçar que o uso de aparelhos de anestesia de qualidade, novos e bem calibrados faz toda a diferença na hora de monitorar a saúde dos pacientes. São eles que mostram os resultados em números para a equipe médica.

O estudo Indicadores de Segurança do Paciente – Anestesia e Cirurgia da Proqualis/Fiocruz, de 2014, mostra que “em uma apresentação para a Associação para o Avanço da Instrumentação Médica (“Association for the Advancement of Medical Instrumentation”) um representante da “FDA Centre for Devices and Radiological Health” declarou que um terço dos 80.000 relatórios de incidentes que recebem anualmente, envolve o uso de equipamentos médicos”.

O relatório também reforçou o papel fundamental da tecnologia na otimização da monitorização da anestesia.

“A tecnologia e os dispositivos médicos desempenham um papel importante no diagnóstico e no tratamento de pacientes em unidades de saúde. Portanto, cada unidade de saúde deve assegurar que um avanço tecnológico recém-adquirido não represente riscos para a segurança dos pacientes e que o fim da vida útil do dispositivo seja antecipada, para

que a qualidade não diminua e os perigos para os pacientes não aumentem devido à obsolescência dos equipamentos.”

Como o aparelho de anestesia pode ajudar na monitorização?

Ao usar bons aparelhos de anestesia e monitoramento, o corpo médico garante que está fazendo a monitorização correta do paciente e tendo precisão na administração dos agentes anestésicos. Entre os vários existentes no mercado, estão:

Vaporizadores

Dispositivos que transformam líquidos anestésicos voláteis em vapor, permitindo sua mistura com o oxigênio e outros gases para a inalação pelo paciente.

Circuito respiratório

Um sistema de tubos e válvulas que conduz os gases anestésicos para o paciente e remove o dióxido de carbono.

Ventilador

Permite o controle da frequência respiratória, volume corrente e pressão inspiratória, garantindo uma ventilação adequada.

Monitor multiparamétrico

Exibe informações sobre diversos parâmetros fisiológicos, como frequência cardíaca, pressão arterial, saturação de oxigênio, frequência respiratória e temperatura.

Bombas de infusão

As bombas de infusão ajudam os profissionais a administrar os medicamentos intravenosos de forma precisa e controlada.

Lembrando que todos esses aparelhos são fundamentais para a sobrevivência do paciente e devem ter qualidade. Por isso, contar com marcas bem estabelecidas no mercado e de confiança faz toda a diferença na hora de escolher produtos com tecnologias avançadas e inovações contínuas

Quais os diferenciais do aparelho Carestation CS650 Prime, da GE?

O aparelho de anestesia Carestation CS650 Prime da GE Healthcare é uma ferramenta avançada que aprimora significativamente a monitorização do paciente durante procedimentos anestésicos. 

Equipado com tecnologia de ponta, oferece uma visualização detalhada e em tempo real dos parâmetros vitais do paciente, como pressão arterial, frequência cardíaca, saturação de oxigênio e níveis de dióxido de carbono. 

Sua interface intuitiva e multifuncional permite que os anestesistas ajustem rapidamente as configurações e respondam de forma ágil a qualquer alteração no estado do paciente. Além disso, o aparelho integra sistemas de alarme e alertas, que ajudam a detectar possíveis complicações precocemente, garantindo uma intervenção oportuna e, consequentemente, aumentando a segurança e a eficácia do processo anestésico.

A MA Hospitalar tem a solução que você precisa

Como você viu, escolher os melhores aparelhos médicos faz toda a diferença na hora de cuidar dos seus pacientes. Pensando nisso e nas tendências de monitorização de anestesia, a MA Hospitalar entrega aos seus clientes as melhores e mais modernas soluções do mercado.

Temos uma gama de equipamentos hospitalares que focam na inovação e na qualidade. Sempre atualizados e de acordo com as normas médicas e hospitalares.

Aqui você encontra desde sistema de anestesia completo até monitores multiparamétricos, contando também com paramentação cirúrgica. Confira nosso site ou entre em contato e escolha o que mais se adapta às suas necessidades. 

A aplicação da inteligência artificial na anestesia representa um avanço significativo na prática médica. Algoritmos de IA já ajudam a prever respostas individuais aos agentes anestésicos com base em dados biométricos e históricos do paciente, permitindo uma administração mais precisa e personalizada. 

A integração da inteligência artificial (IA) na prática da anestesia tem se destacado como uma área de rápido desenvolvimento e potencial transformador. 

Com avanços significativos em aprendizado de máquina e processamento de dados biométricos, a IA está sendo explorada para aprimorar a administração de agentes anestésicos, monitorar sinais vitais durante procedimentos cirúrgicos e otimizar a segurança e o cuidado do paciente.

Conheça as inovações mais recentes na aplicação da IA em anestesia, seus benefícios, desafios e o impacto potencial na prática clínica e na gestão de pacientes. Boa leitura! 

O que é a inteligência artificial?

Inteligência Artificial (IA) é um campo da ciência da computação que se concentra no desenvolvimento de sistemas capazes de realizar tarefas que normalmente requerem inteligência humana. 

Esses sistemas são projetados para aprender com dados, reconhecer padrões, tomar decisões autônomas, resolver problemas complexos e se adaptar a novas situações.

As técnicas fundamentais incluem o uso de algoritmos para processar informações, a aplicação de modelos estatísticos e a construção de redes neurais artificiais que imitam a estrutura e o funcionamento do cérebro humano.

Qual a importância da Inteligência Artificial na anestesia?

A anestesiologia sempre foi uma área inovadora e crucial para o avanço da medicina. Isso não seria diferente com o surgimento da IA, uma tecnologia disruptiva que pode melhorar a visão dos resultados e protocolos clínicos.

Neste contexto, a IA se destaca, principalmente, ao trazer precisão e a segurança dos procedimentos anestésicos. Esses sistemas são capazes de prever respostas individuais com base em históricos clínicos e dados fisiológicos, o que ajuda os anestesistas a ajustar as doses de forma mais precisa e rápida.

De acordo com um artigo da Veja Saúde, um exemplo prático é a predição da hipotensão transoperatória: a inteligência artificial prevê com 20 minutos de antecedência que a pressão arterial do paciente vai cair drasticamente, o que permite uma intervenção mais rápida.

A tecnologia também auxilia na administração das doses, diminuindo a chance de erros humanos, como falhas na dosagem ou administração de medicamentos inadequados. Ou seja, deixa os processos mais seguros e automatizados também.

De acordo com o estudo “Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations”, que indica avanços e desafios da aplicação da tecnologia no setor, a IA pode apresentar benefícios importantes, como:

  • controle e monitoramento dos níveis anestésicos: por meio das análises de dados fisiológicos, torna-se possível definir níveis adequados de anestesia no momento das cirurgias;
  • gestão de dor: com uma dosagem adequada no procedimento anestésico, será possível gerenciar melhor a dor e proporcionar bem-estar aos pacientes;
  • prevenção de eventos de risco: por meio da análise dos eventos de risco, as ferramentas de IA podem ajudar os profissionais da saúde a se prevenirem desses eventos, mitigando ou eliminando eventuais impactos;
  • logística da sala de cirurgia: a IA pode auxiliar os profissionais a agendar cirurgias de forma eficiente e alocar recursos de forma otimizada.

Mas, por que acompanhar essas inovações?

Acompanhar o avanço da IA ajuda os profissionais de anestesiologia a se manterem atualizados e aprimorarem seus procedimentos para um nível mais avançado. Isso significa estar na vanguarda das inovações que podem beneficiar diretamente a prática médica.

De acordo com o podcast da Sociedade Brasileira de Anestesiologia dedicado ao tema existem, no entanto, limitações e riscos que demandam cuidado.

Para a instituição: “A transparência das informações e até mesmo as informações disponíveis ainda são um grande desafio. Se o futuro é sem dúvida mais inteligente devido às máquinas, podemos prever que também é mais humano, uma vez que com as máquinas fazendo o trabalho que podem fazer melhor e com mais acurácia, os profissionais podem se dedicar às habilidades humanas, como empatia, segurança e resolução de conflitos.” 

Embora os benefícios da IA na anestesia sejam inegáveis, questões éticas e legais devem ser cuidadosamente consideradas. A transparência na utilização de algoritmos, a privacidade dos dados dos pacientes e a responsabilidade clínica continuam sendo desafios importantes à medida que a tecnologia evolui.

Quais são os avanços recentes em inteligência artificial na anestesia?

A IA está aprimorando a cada dia e isso não difere na área da saúde. Por esse motivo, vamos explorar com mais detalhes os avanços mais relevantes dessa tecnologia: 

Personalização da anestesia  

Cada paciente responde de maneira única aos agentes anestésicos, e a IA ajuda a personalizar os protocolos de anestesia.

Utilizando modelos preditivos baseados em dados clínicos, genéticos e até mesmo em dados de monitoramento em tempo real, os sistemas de IA podem recomendar doses precisas, minimizando os riscos e os efeitos colaterais.

Simulações e treinamentos

Simulações virtuais baseadas em IA oferecem ambientes seguros para praticar diferentes cenários clínicos, permitindo que os profissionais desenvolvam habilidades sem expor pacientes a riscos desnecessários. 

Além disso, sistemas de IA podem fornecer feedback imediato e personalizado, acelerando a curva de aprendizado e garantindo práticas mais seguras e eficazes.

Recuperação pós-anestésica

Após o procedimento, a IA continua desempenhando um papel crucial na gestão da dor e na recuperação do paciente. Os algoritmos ajudam a prever o nível de dor pós-operatória com base em dados históricos, permitindo uma administração mais eficaz de analgésicos. 

Esses sistemas inteligentes podem monitorar sinais precoces de complicações pós-operatórias, facilitando intervenções rápidas e melhorando os resultados a longo prazo.

Quais são as perspectivas futuras da IA?

Para tal resposta, é interessante uma visão global de como a IA pode impactar as instituições e não apenas o setor da anestesiologia. Afinal, a IA automatiza uma série de processos administrativos e operacionais dentro do hospital, reduzindo a carga de trabalho manual dos profissionais de saúde e aumentando a eficiência.

Isso inclui desde a gestão de agendas e triagem de pacientes até a logística de suprimentos e gestão de leitos. Ao eliminar tarefas repetitivas e propensas a erros humanos, a IA permite que os funcionários se concentrem mais diretamente no atendimento ao paciente, melhorando assim a qualidade do cuidado.

Em termos de diagnóstico e tomada de decisão clínica, a IA utiliza algoritmos avançados para analisar grandes volumes de dados médicos. Isso inclui imagens de diagnóstico, como radiografias e ressonâncias magnéticas, bem como dados de registros médicos eletrônicos. 

Os sistemas de IA podem identificar padrões sutis que podem escapar à percepção humana, ajudando os médicos a realizar diagnósticos mais completos. A tecnologia pode, ainda, integrar dados genômicos e epidemiológicos para personalizar o tratamento e prever a resposta do paciente a diferentes terapias.

No monitoramento contínuo de pacientes, prática comum da anestesia, a IA desempenha um papel crucial na detecção precoce de deterioração clínica, em tempo real. Como comentamos, Isso permite intervenções rápidas e preventivas, reduzindo o tempo de resposta e melhorando os resultados clínicos

Este artigo foi útil? Se busca por um equipamento avançado, tecnológico e de referência em procedimentos anestésicos, o aparelho de anestesia Carestation CS650 Prime da GE Healthcare é uma excelente escolha. Ele oferece funcionalidades de ponta que garantem eficiência e segurança durante os procedimentos.

Converse conosco para saber mais sobre nossas soluções para anestesia!

O módulo de transmissão neuromuscular (TNM) da GE Healthcare é utilizado para avaliar o bloqueio neuromuscular no paciente através da administração de bloqueadores neuromusculares durante o procedimento cirúrgico.

O módulo de TNM proporciona impulsos de estimulação elétrica de um nervo periférico e mede sua resposta neuromuscular a este estímulo.

A linha de acessórios TNM GE Healthcare inclui eletrossensores (Figura 1) e mecanossensores (Figura 2) para adultos e para crianças entre 5 e 40 Kg.

O mecanossensor mede o movimento do polegar utilizando um sensor piezoelétrico, que converte o movimento físico em um sinal elétrico e quantifica a resposta mecânica gerada.

Já o eletrossensor mede diretamente a atividade elétrica do músculo com eletrodos, quantificando a resposta à estimulação nervosa. O eletrossensor pode ser utilizado na mão ou no pé do paciente, tanto em pacientes adultos como pediátricos.

Guia de aplicação de eletrossensores e 
módulo de transmissão neuromuscular.
Figura 1 – Aplicação de eletrossensores e módulo de TNM GE Healthcare
Figura 2 – Aplicação do mecanossensor do módulo de TNM da GE Healthcare

Por que utilizar um módulo de transmissão neuromuscular durante o procedimento cirúrgico? 

Durante alguns procedimentos cirúrgicos, agentes bloqueadores neuromusculares podem ser utilizados com o objetivo de facilitar a intubação e garantir condições ideais para a cirurgia.

No entanto, o uso desses fármacos pode elevar o risco de efeitos adversos pós-operatórios.

A paralisia residual é uma grande preocupação, pois aumenta a morbidade e mortalidade pós-operatória, o tempo de internação e ainda aumenta os custos concomitantes a essas complicações.1, 2, 3, 4 e 5 

Durante todo o procedimento anestésico, o médico deve avaliar continuamente a função neuromuscular do paciente.

Apesar de existirem métodos mais convencionais para avaliar a função neuromuscular em pacientes sob efeito de anestésico, como a capacidade de levantar a cabeça, aperto de mão firme ou ventilação minuto suficiente, há uma grande evidência científica mostrando a superioridade e benefícios do uso da avaliação clínica associada à monitorização neuromuscular quantitativa.

Os monitores de transmissão neuromuscular fornecem medições numéricas de forma automática, indicando a resposta muscular a um estímulo e o nível associado de bloqueio neuromuscular.

Tecnologia que até pouco tempo estava distante, mas que está cada vez mais presente e disponível dentro dos ambientes cirúrgicos. 

Portanto, de acordo com Duţu et al. (2019), o uso da monitorização neuromuscular como guia na reversão de agentes bloqueadores ajuda a evitar o bloqueio neuromuscular residual, trazendo mais segurança para o paciente.

  • Medição automatizada 
  • Maior adequação das doses de relaxantes neuromusculares 
  • Recuperação otimizada 
  • Maior segurança do paciente diminuindo riscos de complicações 
  • Orientação quanto ao momento da extubação 
  • Informação integrada no monitor 

Como essa medição é realizada? 

Através de um eletrodo e uma estimulação no nervo ulnar ou nervo plantar medial, uma resposta imediata será gerada no monitor. Dessa forma, é possível avaliar a profundidade do bloqueio neuromuscular.

O padrão de monitorização é uma sequência de quatro estímulos, também chamado de Train-of-four (TOF). A estimulação TOF permite a contagem do número de contrações musculares provocadas e o cálculo da proporção da quarta para a primeira resposta de contração. 

Quando não são detectadas respostas para a estimulação TOF, a contagem pós-tetânica (CPT) é a única forma de medir o bloqueio neuromuscular.

É gerada uma estimulação tetânica (50 Hz) durante cinco segundos e são contadas as respostas pós-tetânicas para estímulo único. Quanto maior for a CPT (o número de respostas detectadas), mais rápido retornarão as respostas normais de TOF.

Na prática: 

São necessários dois eletrodos para a estimulação elétrica de um nervo periférico (Figura 3). A resposta resultante pode ser medida com dois eletrodos e um mecanossensor, que mede os movimentos entre o polegar e o indicador, ou com um eletrossensor, que utiliza três eletrodos de registro.

O monitor procura a corrente de estímulo necessária para ativar todas as fibras dos músculos estimulados (registrados).

A pesquisa é iniciada com um estímulo de 10 mA e a resposta é medida. A corrente aumenta em incrementos de 5 mA até que o aumento da corrente deixe de aumentar a resposta.

Essa corrente máxima é, então, automaticamente aumentada em 15%, resultando em uma corrente supramáxima.

Se não for encontrada a corrente supramáxima ou se a resposta for muito fraca para a pesquisa de uma corrente supramáxima, a corrente será ajustada para 70 mA.

Figura 3 – Posicionamento dos mecanossensores

Modos de estimulação 

  • Train of four, TOF: Recomendado para a maioria dos casos. Também é a definição padrão.
  • Estimulação por impulso duplo, DBS: Útil com a utilização do mecanossensor. Permite uma melhor observação visual da diminuição nas respostas.
  • Contagem pós-tetânica, PTC: Utilizada para calcular o nível de relaxamento com estimulação tetânica.
  • Estímulo único, EstÚni: O modo de estímulo único é prático quando se utilizam relaxantes despolarizantes: nesses casos, a TOF% não fornece informações adicionais sobre o estado do paciente.

Como interpretar os valores de TNM?

No modo de estímulo TOF, são emitidos 4 pulsos de estimulação em intervalos de 0,5 segundos. A resposta é medida após cada estímulo e calcula-se a relação da quarta com a primeira resposta da sequência TOF, o que resulta em TOF% (Figura 4).

Com o eletrossensor, é exibida a T1%. Se a referência for localizada com êxito, uma escala também será incluída.

Os marcadores da escala representam os valores de referência 0%, 30%, 60%, 90% e 120% (Figura 5).

Quando não há qualquer referência disponível, não é apresentado nenhum valor de T1% e as barras não são representadas em escala.

Quando o relaxamento se aprofunda, a TOF% desce até a quarta resposta desaparecer e não existir qualquer TOF% disponível.

O grau de bloqueio neuromuscular é, então, calculado a partir do número de respostas, a contagem, que representa o número de respostas detectadas para os quatro estímulos. Quanto menor for o número de respostas, mais profundo será o relaxamento.

Figura 4 
Figura 5 – Tabela descreve a profundidade do relaxamento

Passo a passo do uso do TNM 

Passo 1 

Coloque adequadamente o sensor de sua escolha (Figura 6). Pressione início da medição. O monitor iniciará a medição definindo automaticamente a corrente de estímulo e realizando uma medição de referência. Com o paciente não relaxado, TOF% é 100 (Figura 7).

Figura 6
Figura 7

Passo 2 

Os relaxantes não despolarizantes causam um desaparecimento das respostas, indicado por um TOF% mais baixo e uma inclinação no gráfico de barras. Os relaxantes despolarizantes resultam em uma queda igual em todas as quatro respostas, sem desaparecimento.

Figura 8

Passo 3 

O bloqueio neuromuscular pode ser utilizado para facilitar a intubação endotraqueal. O médico pode usar o tempo em que todas as respostas desaparecem (ou seja, a contagem TOF é 0) como um guia para determinar quando intubar.

Figura 9 

Passo 4  

Durante a cirurgia e em cuidados intensivos, a contagem TOF (Count) é usada para manter um nível ideal constante de bloqueio neuromuscular. Quando a contagem TOF excede um nível definido pelo usuário, o monitor GE exibirá uma mensagem de “Bloco de recuperação”.

Figura 10 

Passo 5

Com base no tipo de agente de reversão que deseja utilizar, você pode cronometrar a administração usando TOF% e contagem de contrações. Para uma extubação segura, o TOF% deve ser superior a 90.7 

Figura 11 

Onde encontrar TNM nos monitores da GE Healthcare? 

É possível realizar a monitorização da Transmissão Neuromuscular em todos os monitores da GE Healthcare (B105, B125 e B155 a partir da versão 3 e B450, B650 e B850) através do módulo E-NMT.

Módulo E-NMT 
Monitores B105, B125 e B155

 

Monitores Carescape B450
Monitores Carescape B650 e B850 

Fale conosco para saber mais

NA MA Hospitalar, trabalhamos com diversos modelos de monitores e aparelhos de anestesia da GE Healthcare. Nossas soluções ainda contam com outras funções valiosas, como o oxicardiorrespirograma e o monitoramento de gases.

Entre em contato com a MA Hospitalar e adquira o seu!

Referências 

  • 1. Herbstreit F, Peters J, Eikermann M. Impaired upper airway integrity by residual neuromuscular blockade: increased airway collapsibility and blunted genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology 2009;110:1253-60. 
  • 2. Eikermann M, Groeben H, Husing J, Peters J. Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology 2003;98:1333-7. 
  • 3. Eriksson LI, Sato M, Severinghaus JW. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology 1993;78:693-9. 
  • 4. Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 2008;107:130-7. 
  • 5. Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbaek J, Skovgaard LT, Krintel JJ. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997;41:1095-103. 
  • 6. Duţu M, Ivaşcu R, Tudorache O, et al. Neuromuscular monitoring: an update. Rom J Anaesth Intensive Care. 2018;25(1):55–60. 
  • 7. Naguib M, Brull SJ, Kopman AF, et al. Consensus Statement on Perioperative Use of Neuromuscular Monitoring. Anesth Analg 2018; 127:71-80. 

Conheça também nossa linha de aparelhos de anestesia e suas funções, como o Modo PSV Pro!

O contexto para a hipotermia

O organismo humano possui um sistema termorregulador que mantém a temperatura corporal em torno de 37°C a fim de manter o metabolismo basal eficaz através do equilíbrio na produção de calor (termogênese) e da dissipação de calor (termódise).

A termogênese depende da reserva de calor e do oxigênio necessário para a metabolização das reservas de energia diminuída em pessoas exaustas, hipóxicas ou traumatizadas.

A termódise depende de vestimentas e fatores ambientais.

Termólise

  • Irradiação:  A pele irradia calor para o meio ambiente e este esfria a pele.
  • Condução: Perda de calor por contato. Depende da temperatura das substâncias que entram em contato e sua capacidade condutora. Ex.: mesa cirúrgica.
  • Convecção: É uma forma especial de condução que se refere ao movimento do ar. Quanto maior a velocidade do ar, maior a transferência de calor.
  • Evaporação: Perda de calor quando um líquido passa ao estado gasoso. Tem dois componentes, pele e respiração. Em cirurgias com exposição visceral pode aumentar de forma considerável a perda de temperatura.

Se tratando de ambiente hospitalar, durante um procedimento anestésico cirúrgico, foi constatado que 20% dos pacientes apresentam hipotermia no período perioperatório, principalmente causada pela ação direta das drogas anestésicas e pelo resfriamento do ambiente cirúrgico, e que 60% evoluem para hipotermia no período pós-operatório.

Causas para hipotermia

As drogas anestésicas atuam no centro de termorregulação, inibindo respostas ao frio como vasoconstrição e tremores musculares. Além de possuírem ação vasodilatadora.

Quando ocorre o fim da anestesia, a interrupção da infusão das drogas e a diminuição da concentração das mesmas no sistema nervoso central faz com que o mecanismo de termorregulação tenda a voltar ao normal, porém muitas drogas possuem efeito residual e meia vida longa, fazendo com que se prolongue a eficácia do mecanismo de regulação.

A hipotermia é considerada quando se atinge temperaturas abaixo de 36°C e pode ser leve (34°C -36°C), moderada (30°C-34°C) ou grave (abaixo de 30°C). E leva a diversas complicações pós-operatórias como alterações cardiovasculares, coagulopatias, aumento do risco de infecção, alterações hidroeletrolíticas, entre outras.

Apesar de todas essas evidências, ainda não é de costume utilizar rotineiramente monitorização para aferição de temperatura durante os procedimentos cirúrgicos. O diagnóstico precoce e utilização de medidas de aquecimento durante o ato cirúrgico é fundamental para que se evite complicações futuras.

Fatores de risco

Dentre os fatores de risco para a hipotermia os mais importantes estão relacionados à própria técnica anestésica.

Estudos demonstraram que técnicas combinadas como anestesia geral e bloqueio de neuroeixo concomitante são mais propícias a desencadear hipotermia do que técnicas isoladas. Sendo a anestesia geral a de menor risco.

Isso se deve à combinação dos efeitos diretos das drogas no centro termorregulador somado a ação vasoconstritora dos bloqueios espinhais.

O uso de opioides também tem íntima relação com a hipotermia intraoperatória, uma vez que agem no hipotálamo, quando administrados por via venosa, exercendo efeitos farmacológicos nos receptores mu do centro termorregulador assim como através dos receptores kappa periféricos da medula espinhal em bloqueios de neuroeixo.

A idade também é um fator de risco para a hipotermia. Pacientes idosos possuem uma resposta ineficaz ao calor, resposta vasoconstritora diminuída, menos massa muscular assim como menor capacidade de produzir calor.

Fatores relacionados a cirurgia como tempo cirúrgico prolongado, cirurgias abertas, sangramento, maior exposição ao ambiente frio e mecanismos de irrigação contínua no pós-operatório, contribuem para o estabelecimento de hipotermia e sua perpetuação no período pós-operatório.

Sendo assim, a diminuição dos fatores de risco somados à aferição de rotina da temperatura nos pacientes cirúrgicos, principalmente durante a primeira hora do procedimento cirúrgico é fundamental para se evitar a queda da temperatura durante a cirurgia e consequentemente evitar as complicações pós-operatórias relacionadas a hipotermia.

Uso de mantas e colchões térmicos, infusões aquecidas e aumento da temperatura do ambiente cirúrgico são medidas de suporte eficazes para manter o paciente aquecido.

Essas medidas também devem ser mantidas durante o tempo em que o paciente permanece na recuperação pós anestésica4, uma vez que grande parte dos pacientes apresenta queda da temperatura no período pós-operatório também.

Vale muito ressaltar que a Hipotermia no paciente cirúrgico é:

Comum:

  • Os pacientes perdem em média 3ºC durante a anestesia6,8.
  • A maior perda é durante a primeira hora de anestesia8.
  • A incidência de hipotermia é de 60 a 85% no pós-operatório dos pacientes que não utilizaram sistema de aquecimento por ar, por convecção9,11.

Custosa:

  • Pacientes com hipotermia custam em média US$ 7.000 ao hospitais12.
  • Apresentam 2,6 dias a mais de permanência hospitalar13.

Debilitante:

  • Infecção de feridas aumentam 19% nos pacientes hipotérmicos13.
  • Aumento de taxa de mortalidade em 31% nos pacientes hipotérmicos14,15.

Diante de todos estes pontos críticos, o conselho federal de medicina através da resolução 2174/17 dispõe sobre a prática do ato anestésico, definindo as condições de segurança correlacionadas à utilização de materiais e condutas que garantam uma anestesia segura.

Dentre suas considerações, é determinado:

“Art. 3º Entende-se por condições mínimas de segurança para a prática da anestesia a disponibilidade de:

I – Monitorização do paciente, incluindo:

c) Determinação da temperatura e dos meios para assegurar a normotermia em procedimentos com duração superior a 60 (sessenta) minutos e nas condições de alto risco, independentemente do tempo do procedimento (prematuros, recém-nascidos, história anterior ou risco de hipertermia maligna e síndromes  neurolépticas).”15

Fale conosco ou acesse nossa loja para conhecer nossas soluções!

Referências bibliográficas

  1. Horn EP, Bein B, Broch O, et al. Warming before and after epidural block before general anaesthesia for major abdominal surgery prevents perioperative hypothermia: a randomised controlled trial. Eur J Anaesthesiol. 2016;33:334-340.  doi: 10.1097/EJA.0000000000000369
  2. Gurunathan U, Stonell C, Fulbrook P. Perioperative hypothermia during hip fracture surgery: An observational study. J Eval Clin Pract. 2017;23:762-766.
  3. Mendonça FT et al. Fatores de risco para hipotermia pós‐operatória em sala de recuperação pós‐anestésica: estudo piloto prospectivo de prognóstico. Brazilian Journal of Anesthesiology. 2019 Mar-Abr; 69(2):122-130.
  4. Horosz B, Malec-Milewska, Małgorzata. Inadvertent intraoperative hypothermia. Anaesthesiology Intensive Therapy 2013, vol. 45, no 1, 38–43. 
  5. Torossian, A. Thermal management during anaesthesia and thermoregulation standards for the prevention of inadvertent perioperative hypothermia. Best Practice & Research Clinical Anaesthesiology Vol. 22, No. 4, pp. 659–668, 2008. 
  6. Matsukawa T, Sessler DI, Sessler, AM et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology 1995; 82: 662–673. 
  7. Kiekkas P, Poulopoulou, M, Papahatzi, A, Souleles, P. Effects of Hypothermia and shivering on Standard PACU monitoring of Patients. AANA Journal/Feb. 2005/Vol. 73 No 1 
  8. Stewart SMB, Lujan E, Ruff CL. Incidence of adult hypothermia in the post anesthesia care unit. Periop Nurs Q. 1987;3:57-62. 
  9. Vaughan MS, Vaughan RW, Cork RC. Postoperative hypothermia in adults: relationship of age, anesthesia and shivering to rewarming. Anesth Analg. 1981;60:746-751. 
  10. Brown Mahoney, C, Odom J. Maintaining intraoperative normothermia: A meta-analysis of outcomes with costs. AANA Journal, April 1999; Vol.67, No 2. 
  11. Kurz A, Sessler DI, Narzt E, et al. Postoperative hemodynamic and thermoregulatory consequences of intraoperative core hypothermia. J Clin Anesth. 1995;7:359-366 
  12. Niven, DJ, Stelfox, HT, Laupland, KB. Hypothermia in Adult ICUs: Changing Incidence But Persistent Risk Factor for Mortality. J Intensive Care Med. Published online October 21, 2014. 
  13. BRASIL. Entidades de Fiscalização do Exercício das Profissões Liberais / Conselho Federal de Medicina. RESOLUÇÃO 2.174, DE 14 DE DEZEMBRO DE 2017. Diário Oficial, Brasília, DF, 27 de fev. de 2018, seção 1, p. 75-84. 
  14. https://pebmed.com.br/fatores-de-risco-para-hipotermia-perioperatoria/

Tradicionalmente, os anestesiologistas administram os gases e os agentes anestésicos (AA) ajustando manualmente as concentrações dos vaporizadores e os fluxos de gases frescos (FGF).

Você sabia que é é tecnicamente possível realizar a anestesia de baixo fluxo de forma automática, através do controle expirado (ET) no final da expiração?

Com a evolução da pandemia, onde todos os recursos estão sendo direcionados de maneira integral na promoção de saúde e tratamento dos pacientes contaminados pela Covid-19 — todas as alternativas e tecnologias que possam vir a contribuir na amenização das consequências serão bem-vindas.

E, cada vez mais, as inovações tecnológicas estão sendo implantadas com intuito de oferecer a melhor qualidade no atendimento de todos. 

Para a área de anestesiologia, podemos contar com ferramentas que auxiliam no monitoramento seguro da técnica de anestesia de baixo fluxo para possibilitar o uso racional dos medicamentos anestésicos, conforme recomenda a Sociedade Brasileira de Anestesiologia (SBA), principalmente neste cenário atual.

Além disso, o custo e a poluição ambiental são duas das principais preocupações com a anestesia geral, que podem estar sendo solucionadas também com esse recurso.

Primeiramente, para trabalhar com segurança, você deve se lembrar dos princípios básicos farmacológicos e fisiológicos subjacentes. É importante entender como as concentrações de gás se comportam em um sistema circular e como elas dependem de diferentes fluxos de gases frescos (FGF).

Na prática, o anestesista precisa conhecer os possíveis riscos e benefícios de uma determinada técnica. E, em especial, na anestesia com baixo fluxo e mínimo, o médico deve compreender a importância do monitoramento da ventilação e da medição das concentrações de gases e agentes anestésicos.

A anestesia geral inalatória é aplicada e monitorada por um anestesista.

Comumente, a técnica de baixo fluxo é realizada manualmente, ou seja, o médico define o alvo da concentração de oxigênio, necessitando alterar quando preciso a fração de gás inspirado (FiO²), o fluxo de gás fresco e as concentrações do vaporizador para garantir a aplicação ideal da anestesia, minimizando o desperdício de anestésico e possibilitando maior segurança para o paciente. 

No entanto, existe uma alternativa de realizar essa técnica de maneira mais eficaz e segura que é através da automação.

O anestesista irá definir o alvo da fração expirada de oxigênio (EtO²) e os valores da fração expirada de agente anestésico (EtAA) e a máquina ajustará automaticamente a administração do agente e o FGF total para atingir e/ou manter os valores estabelecidos, otimizando o fluxo de trabalho do anestesista.

ANESTESIA DE BAIXO FLUXO

A anestesia com baixo fluxo é uma técnica que usa um sistema de reinalação para retornar pelo menos 50% do valor exalado de gases para o pulmão do paciente após a eliminação de dióxido de carbono (CO²).

Sua popularidade e uso estão aumentando em todo o mundo devido à crescente importância do controle de custos, maior consciência ambiental e a disponibilidade de equipamentos avançados de anestesia.

Devido ao seu baixo custo, a anestesia de baixo fluxo está se tornando cada vez mais difundida. Body et al. relataram que a taxa de fluxo de gás fresco usada em seu hospital foi de 1,8 L/min.

Tohmo et al. relataram que a frequência de uso do sistema de reinalação para a prática de anestesia na Finlândia aumentou de 62% em 1995 para 83% em 2002, enquanto a taxa de fluxo de gás fresco diminuiu de 3L/min para 1-2L/min no mesmo tempo.

Kennedy et al. avaliaram as mudanças no fluxo de gás fresco em um hospital de treinamento na Nova Zelândia em 2001 e 2006, e relataram que a taxa média de fluxo de gás fresco foi de 1,5 L / min em 2001 e diminuiu para 1,27 L / min em 2006, representando uma redução de 35% no fluxo de gás fresco em 4 anos. 

REQUISITOS BÁSICOS PARA ANESTESIA DE BAIXO FLUXO

A anestesia de baixo fluxo pode ser definida como uma técnica em que o FGF é adaptado para atender a necessidade do oxigênio do paciente (cerca de 200mL/min) e de anestésicos voláteis. Além disso, existe a cal sodada (absorvedor de CO²) que faz a remoção do CO² do circuito respiratório. 

Para a realização da técnica de anestesia de baixo fluxo, existem alguns requisitos técnicos que são importantes para sua execução segura. Dentre eles, podemos citar:

  1. Sistema de respiração circular com absorção de CO²;
  2. Medidores de fluxo precisos para ajuste de fluxos de gás fresco abaixo de 1,0L/min;
  3. Vaporizadores precisos, capazes de fornecer de maneira confiável concentrações de agentes anestésicos voláteis com FGF abaixo de 1,0L/min;
  4. Deve haver um sistema respiratório estanque aos gases. O teste de vazamento recomendado deve ser abaixo de 150mL/min no teste de pressão de 30cmH²O. Normalmente, o fole ascendente que não sobe até o topo da câmara do fole pode indicar vazamento no sistema respiratório. Outra indicação de vazamento no circuito pode ser que o ALARME BAIXO da pressão de pico das vias aéreas se tornaria ativo. Além disso, se os loops de espirometria exibidos na tela do monitor não fecharem corretamente, isso também pode indicar um vazamento;
  5. O sistema respiratório deve ter volume interno mínimo e um número mínimo de componentes e conexões.
  6. O monitoramento contínuo de gás deve ser empregado. As concentrações de gás inspiratório e expiratório devem ser medidas a cada ciclo respiratório. 

Além dos requisitos acima, o monitoramento da ventilação deve sempre ser empregado. A medição do CO² expirado fornecerá essa informação e ajudará a controlar a ventilação alveolar do paciente. 

Para controlar os volumes do sistema respiratório e a mecânica pulmonar do paciente, informações adicionais podem ser obtidas monitorando as pressões das vias aéreas, os volumes respiratórios e os loops de espirometria.

SISTEMA CIRCULAR E SEUS COMPONENTES

O uso de agentes anestésicos inalatórios em circuito fechado ou semifechado leva à reinalação dos agentes anestésicos voláteis. Isso leva à diferença na concentração fornecida e inspirada de agentes anestésicos voláteis, dependendo do fluxo de gás fresco (FGF).

E, dependendo do FGF entregue, o sistema circular pode funcionar em diferentes formas.

  • A anestesia de alto fluxo usa um FGF, que está próximo do volume-minuto do paciente (em média 3 a 6L/min em um adulto normal);
  • A anestesia com baixo fluxo usa um FGF de menos da metade do volume-minuto do paciente, o que é mais frequentemente inferior a 3,0L/min em média em um adulto normal;
  • Na anestesia com fluxo mínimo, o FGF é reduzido para 0,5L/min.
  • Na anestesia de sistema fechado, o FGF é adaptado para igualar a necessidade do oxigênio do paciente e agentes anestésicos.

A lista de componentes de um sistema circular seguirá:

  1. Entrada de FGF
  2. Ramo inspiratório com válvula unidirecional
  3. Ramo expiratório com válvula unidirecional
  4. Absorvente para remoção de CO²
  5. O volume do reservatório para ventilação com pressão positiva, tanto com bolsa manual quanto com fole do ventilador, pode ser conectado aqui.
  6. Válvula de exaustão para eliminação de gases residuais
  7. Peça em Y do paciente, sensor de fluxo de espirometria e mostrador de gás
  8. Filtro bacteriano pode ser adicionado aqui

QUAIS AS VANTAGENS DO SISTEMA CIRCULAR?

A vantagem dos sistemas circulares é que eles permitem o uso de FGF baixo ou mínimo. São, no entanto, sistemas estruturalmente complexos e quando baixo FGF é usado, as concentrações de gás inspirado não se relacionam intimamente com as concentrações de FGF administradas pela máquina anestésica.

Monitores de gás sofisticados, integrados em máquinas anestésicas modernas, são, portanto, essenciais. Em resumo, podemos destacar as seguintes vantagens:

  • Baixos custos;
  • Diminui a contaminação;
  • Maior precisão na medida dos volumes;
  • Monitoração direta do consumo de O²;
  • Melhor umidificação.

QUANTO TEMPO POSSO USAR A CAL SODADA (ABSORVEDOR DE CO²) SEM SUBSTITUIÇÃO?

A cal sodada faz parte da prática clínica diária do anestesiologista. É ela que permite o uso de baixo fluxo de gases frescos a fim de reduzir o consumo de anestésico, manter a temperatura corporal do paciente, conservar a umidade das vias aéreas e evitar poluição na sala de cirurgia.

Devido ao menor consumo de gases e de anestésicos, torna-se um aliado econômico da unidade hospitalar.

Além de manter a umidade do ar inalado, evitando os efeitos deletérios de gases secos, tais como ressecamento, inflamação e perda dos movimentos ciliares, leva à redução do fluxo, causando diminuição da complacência pulmonar.

A absorção do CO² é uma reação química exotérmica. No sistema em circuito fechado, a água e o calor da reação contribuem para a umidificação e o aquecimento da mistura. 

A capacidade de absorção de CO² é baseada no volume-minuto do paciente, o volume da cal sodada e a taxa de FGF selecionada. Quanto menor o FGF, mais o gás é reciclado no circuito, maior a remoção de CO² pelo absorvedor. Contudo, o baixo FGF, levará a necessidade de troca da cal sodada mais vezes ao dia.

ENTÃO, QUANDO A CAL SODADA DEVE SER TROCADA?

A troca da cal sodada deve ocorrer quando houver um aumento considerável nos valores medidos da fração inspirada de CO² (FiCO²) e sem alterações significativas nas configurações da ventilação do paciente.

Outro ponto visível que indica a troca da cal sodada é a mudança da coloração para roxa. Quando a cor da cal sodada muda permanentemente isso sinaliza a hora de trocar o absorvedor. Porém, é importante se atentar que depois de algum tempo, essa mudança de cor pode desaparecer.

Portanto, é melhor trocar o absorvedor por conta própria em vez de deixá-lo durante a noite, pois as pessoas no dia seguinte podem não estar cientes das informações sobre a capacidade do absorvedor.

VOCÊ SABIA?

O potencial de superfornecimento ou subfornecimento tanto do agente quanto da concentração final de oxigênio é o grande desafio da atualidade na anestesia, mas a automação pode ajudar você a superá-lo.

A otimização do fornecimento de agente anestésico e de oxigênio pode ajudar você a aumentar a qualidade do atendimento de seus pacientes, incluindo os que precisam de cuidados extras.

AFINAL, O QUE É ANESTESIA DE BAIXO FLUXO AUTOMÁTICA?

A anestesia inalatória controlada pelo alvo da EtO2, também chamada de controle expirado, é um sistema de realização de anestesia disponível nas máquinas mais recentes.

Nessa modalidade a máquina ajusta automaticamente o fluxo de gás fresco total e a concentração do agente anestésico para atingir os níveis desejados definidos pelo anestesista.

Aparelhos de anestesia da GE Healthcare possibilitam a técnica da anestesia de baixo fluxo.

Automatizar o processo de monitoramento e ajuste das concentrações de gás encurta a indução anestésica e resulta em concentrações anestésicas arteriais e cerebrais mais estáveis, estabilizando o nível de anestesia.

Também minimiza a quantidade de gás fresco e anestésico desperdiçado, reduzindo os custos de saúde e a carga ambiental.

O consumo de agentes inalatórios não depende apenas do FGF, mas também da solubilidade relativa do gás. Assim, o monitoramento das pressões parciais dos agentes inalados dentro do sistema respiratório é desejável. 

O uso de agentes anestésicos inalatórios em circuito fechado ou semifechado leva à reinalação dos agentes anestésicos voláteis. Isso leva à diferença na concentração fornecida e inspirada de agentes anestésicos voláteis, dependendo do FGF.

COMO FUNCIONA?

O circuito respiratório interno da anestesia consiste em um misturador de gás que controla a quantidade de oxigênio e ar ou óxido nitroso fornecido ao paciente, dependendo das configurações.

As válvulas seletoras abrem de acordo com o modo de seleção. Os sensores monitoram continuamente o misturador de gás.

O gás misturado sai do misturador e flui para o vaporizador eletrônico, onde a vaporização do agente ocorre usando um fluxo de desvio convencional e o princípio de vaporização livre. Então, o gás comum com o agente flui através das válvulas de entrada e saída.

No entanto, a entrega real do agente é controlada pelo “vaporizador eletrônico” interno. Este dispositivo regula o fluxo de desvio e controla as válvulas de entrada e saída para atingir a saída desejada no gás fresco.

Vários sensores no caminho do gás monitoram constantemente o fluxo e a pressão para garantir a concentração de vapor desejada no FGF, mesmo em taxas mínimas. O consumo dos vários gases inalados é calculado automaticamente pelo software computadorizado embutido na máquina.

E QUAIS AS VANTAGENS DA AUTOMAÇÃO?

Dentre as vantagens da anestesia de baixo fluxo automática, podemos destacar:

  1. Com a facilidade da automação, a carga de trabalho é reduzida para o anestesista, possibilitando que ele se preocupe com outros pontos;
  2. Efetividade na entrega de agentes, otimizando a entrega do FGF;
  3. Guarda hipóxica inteligente (mínimo 25%) com a manutenção de fluxos baixos;
  4. Economia de gases e AA, impactando nos custos e poluição ambiental;

Sabemos que o consumo de medicamentos anestésicos está excessivo devido ao problema mundial de saúde que estamos enfrentando desde 2020 por conta da Covid-19.

E, com isso, a técnica de anestesia de baixo fluxo automática é uma alternativa eficaz e segura para racionalizar o uso desses medicamentos, além de contribuir na redução dos custos hospitalares e poluição ambiental, bem como oferecer uma maior segurança no atendimento do paciente.

Entre em contato conosco ou acesse nossa loja para saber mais sobre nossas soluções!

REFERÊNCIAS BIBLIOGRÁFICAS

  • ARAI, L. A. C; AZEVEDO, R. B. Contaminação do Aparelho de Anestesia por Agentes Patógenos. Rev Bras Anestesiol. Vol. 61, nº 1, 2011: 50-59.
  • BODY, S. C; FANIKOS, J; DePEIRO, D. et al. Individualized feedback of volatilee agent use reduces fresh gas flow rate, but fails to favorably affect agent choice. Anesthesiology 1999;90:1171–5.
  • Tohmo H, Antila H. Increase in the use of rebreathing gas flow systems and in the utilization of low fresh gas flows in Finnish anaesthetic practice from 1995 to 2002. Acta Anaesthesiol Scand. 2005 Mar;49(3):328-30.
  • Kennedy RR, French RA. Changing patterns in anesthetic fresh gas flow rates over 5 years in a teaching hospital. Anesth Analg. 2008;106:1487–90.
  • POTDAR, M. P; KAMAT, L. L; SAVE, M. P. Cost efficiency of target-controlled inhalational anesthesia. Journal of Anaesthesiology Clinical Pharmacology. April-June, 2014. Vol 30.
  • HERBERT, L; MAGEE, P. Circle systems and low-flow anaesthesia. BJA Education. Volume 17, Number 9, 2017.
  • NICE. End-tidal Control software for use with Aisys closed circuit anaesthesia systems for automated gas control during general anaesthesia. Medtech innovation briefing. 2014.
  • KALLI, I. Clinical performance of electronic control for Aisys™, to automatically adjust fresh gas, agent and oxygen. Helsinki University Central Hospital, Helsinki, Finland.

A evolução na área de Anestesiologia é marcada pelo avanço de tecnologias cada vez mais inovadoras que auxiliam no melhor cuidado do nosso principal cliente: o paciente.

Você acha possível evitar o consumo excessivo de agentes anestésicos inalatórios, além de preservar e impactar na segurança do paciente?

Para compreendermos melhor o benefício da ferramenta Ecoflow, é importante entender a correlação do impacto do consumo de agentes anestésicos inalatórios versus custos hospitalares e o conhecimento das possíveis complicações pulmonares pós-operatórias.

Entramos no segundo ano consecutivo de enfrentamento da Covid-19, que em comparação ao ano de 2020, os casos atuais de contaminação por esse vírus fatal estão mais graves, prolongados e com alta taxa de mortalidade.

Por consequência, com o elevado número de casos graves, houve um aumento significativo no consumo de medicamentos sedativos, analgésicos e bloqueadores neuromusculares. Porém, atualmente, existe um outro grande problema: a falta de fármacos para sedar e anestesiar os pacientes.

Considerando que os fármacos essenciais para as técnicas anestésicas estão em falta ou em ameaça de falta em diversas regiões do país, a Sociedade Brasileira de Anestesiologia (SBA) recomenda o uso racional de fármacos em anestesia e sedação, principalmente, nos procedimentos cirúrgicos eletivos.

Os principais fármacos envolvidos são os de uso comum pela anestesia e pela terapia intensiva: agentes indutores, tranquilizantes, bloqueadores neuromusculares, opioides, analgésicos, anestésicos locais, anestésicos inalatórios e agonistas dos receptores alfa, entre outros.

O objetivo dessa recomendação da SBA é alertar os anestesiologistas e demais médicos, principalmente neste momento de pandemia, a encontrarem medidas que possam minimizar ou contornar a escassez desses fármacos, devido ao consumo excessivo pela necessidade de tratamento prolongado dos pacientes portadores da Covid-19.

Segundo a Organização Mundial de Saúde, a segurança anestésica é definida como o “conjunto de ações realizadas pelo anestesiologista, que visa a redução da insegurança anestésica por meio da inspeção formal do equipamento, da checagem dos medicamentos e do risco anestésico do paciente antes da realização de cada cirurgia”.

AGENTES ANESTÉSICOS INALATÓRIOS E SUAS PROPRIEDADES

Os anestésicos inalatórios, também denominados de halogenados, são administrados via pulmonar, difundem-se para o sangue e, uma vez diluídos, alcançam as suas zonas de atuação a nível do Sistema Nervoso Central (SNC) através da circulação sanguínea, sendo eliminados posteriormente, na sua maior parte, outra vez por via pulmonar.

A potência anestésica dos gases é dada pela Concentração Alveolar Mínima (CAM). Esta pode ser definida como a concentração mínima de anestésicos nos alvéolos que produz imobilidade em 50% dos doentes expostos a estímulos dolorosos (por exemplo à incisão cirúrgica).

A CAM é, portanto, usada para comparar os diferentes anestésicos voláteis bem como suas respectivas eficácias. A duração da anestesia geral, o tamanho e peso do paciente não influenciam o valor da CAM, mas a idade e a temperatura corporal podem influenciar.

Esses anestésicos também têm importância nos parâmetros provenientes do sistema cardiorrespiratório (concentração e ventilação alveolar, débito cardíaco e perfusão cerebral) pois estes influenciam a absorção, distribuição e eliminação dos anestésicos inalatórios.

Existem vários anestésicos voláteis que podem ser usados para a indução e manutenção da anestesia geral. Os mais utilizados são o Isoflurano e o Sevoflurano.

ISOFLURANO

  • Indicação: Manutenção da anestesia geral (reduz o nível de consciência).
  • Formas de apresentação: Líquido volátil claro, incolor em temperatura ambiente, deve ser armazenado em frasco vedado. Não é inflamável e não é explosivo em misturas de ar e oxigênio. Isoflurano é fornecido em embalagens contendo 1 frasco de 100 ml ou 250 ml de líquido volátil (não contém excipientes).
  • Diluição para infusão: Administração via vaporizador preferencialmente do tipo calibrado, agente específico para Isoflurano ou vaporizador do tipo não calibrado para uso com múltiplos agentes (universal).
  • Pontos importantes: É um anestésico largamente utilizado. Doses: Usualmente, é mantida entre 0,5 e 1 CAM (0,6% – 1,2% – concentração expirada), dependendo dos outros anestésicos utilizados.

SEVOFLURANO

  • Indicação: Indução e manutenção de anestesia geral em pacientes pediátricos ou adultos, em procedimentos cirúrgicos hospitalares ou ambulatoriais.
  • Formas de apresentação: Líquido volátil claro, incolor em temperatura ambiente, deve ser armazenado em frasco vedado. Não é inflamável e não é explosivo em misturas de ar e oxigênio. Sevoflurano é fornecido em embalagens contendo 1 frasco de 100 ml ou 250 ml.
  • Diluição para infusão: Administração via vaporizador preferencialmente do tipo calibrado, agente específico para Sevoflurano ou vaporizador do tipo não calibrado para uso com múltiplos agentes (universal).
  • Pontos importantes: É um anestésico largamente utilizado e idealmente conveniente para indução de pacientes com dificuldades para abordagem das vias aéreas. Doses: Usualmente, é mantida entre 0,5 e 1 CAM (1% – 2% – concentração expirada), dependendo dos outros anestésicos utilizados.

COMO A ANESTESIA DE BAIXO FLUXO PODE AJUDAR NESSE CENÁRIO?

A introdução de novos agentes anestésicos voláteis com baixa solubilidade e baixa potência anestésica reforçou a necessidade de reduzir o consumo de agente anestésico diminuindo o fluxo de gás fresco (FGF).

Além dos benefícios econômicos ou ambientais, o baixo fluxo pode ter um impacto positivo na qualidade do atendimento ao paciente.

A maior parte dos gases anestésicos, em média mais de 80%, são desperdiçados quando o FGF de 5,0 L/min é utilizado. Vários estudos também comprovam que o uso de técnicas de anestesia com baixo ou mínimo fluxos podem reduzir drasticamente os custos anuais de anestésicos voláteis.

Normalmente, a redução do FGF de 3,0 L/min para 1,0 L/min resulta em uma economia de cerca de 50% do consumo total de qualquer agente anestésico volátil.

Foi realizado um estudo para identificar o perfil e o impacto econômico do consumo dos anestésicos inalatórios no Serviço de Anestesiologia e Medicina Perioperatória (SAMPE) no período de 2002 a 2012 no Hospital de Clínicas de Porto Alegre.

Podemos verificar nos gráficos abaixo que o estudo demonstrou um aumento substancial no consumo do anestésico Sevoflurano, refletindo em gastos progressivamente mais elevados com esse fármaco.

E, estratégias para minimizar o custo dos novos anestésicos inalatórios como o uso de técnicas de fluxo basal e redução efetiva do tempo da sala de recuperação são exemplos das medidas sugeridas pelo estudo para reduzir esse índice.

Outro ponto a ser considerado, também, é que nas técnicas anestésicas com fluxos mais altos, geralmente, os gases são secos e úmidos. Já nas de fluxos mais baixos ou mínimos, os gases fornecidos que recirculam no circuito fechado tornam-se mais quentes e úmidos.

E, respirar gases quentes e úmidos durante a anestesia é benéfico para o paciente por vários motivos.

  • Melhora a preservação da temperatura corporal do paciente durante a cirurgia;
  • Prevenção da perda de calor central para a periferia por causa da vasodilatação durante a anestesia;
  • Evita tremores pós-operatórios;
  • Possibilita manter a humidade ideal do paciente;
  • Evita o ressecamento das vias aéreas superiores e inferiores durante a intubação.

A maioria das máquinas de anestesia modernas são equipadas com o sistema circular de reinalação, o que permite uma redução considerável do FGF. Os benefícios disso tornam-se mais evidentes quando o FGF é reduzido para menos da metade do volume-minuto do paciente, geralmente, para menos de 3,0 L/min.

E, as técnicas de FGF baixo afetam a cinética do gás no sistema, especialmente, quando o FGF é inferior a 1,0 L/min. Para tanto, torna-se necessário o monitoramento das concentrações de gases inspirados e expirados.

Esse monitoramento não garante apenas a segurança do paciente, mas também facilita a administração precisa de gás para o paciente.

QUAIS AS COMPLICAÇÕES PULMONARES PÓS-OPERATÓRIAS DO USO EXCESSIVO DE ANESTÉSICOS E VENTILAÇÃO MECÂNICA PROLONGADA?

Os procedimentos cirúrgicos costumam estar associados a mudanças circunstanciais dos componentes fisiológicos e metabólicos que garantem a homeostasia. Elas variam de acordo com o biótipo do paciente e do tipo de cirurgia e, em situações de trauma, dependem ainda da gravidade e extensão das lesões.

A iatrogenia em procedimentos cirúrgicos abrange uma gama de complicações e sendo de responsabilidade tanto dos cirurgiões quanto dos anestesistas fazerem o que estiver aos seus alcances para evitar uma complicação, buscando sempre o aperfeiçoamento de suas técnicas bem como a utilização de ferramentas que possam auxiliar nesse processo.

Por exemplo, uma anestesia com alto fluxo de gases e muito profunda pode provocar uma série de complicações pulmonares ao paciente.

Dentre essas complicações, podemos destacar:

• Insuficiência respiratória;

• Exacerbação das condições respiratórias pré-existentes;

• Tromboembolismo pulmonar;

• Atelectasia pulmonar (colabamento alveolar);

• Pneumonia;

• Edema pulmonar.

O QUE É ECOFLOW?

É uma ferramenta que auxilia o anestesista a monitorar o “alvo” pré-ajustado de O2 e, no decorrer da cirurgia ou o baixo fluxo de gases, a máquina sugere a FiO2 alvo, permitindo que o médico ajuste ou não esse alvo conforme a necessidade.

Com ela é possível verificar o custo do agente anestésico consumido em tempo real.

A sua utilização monitora a fração inspirada de O2 (FiO2) possibilitando mais segurança ao anestesista e paciente durante a técnica de baixo fluxo para evitar a entrega de mistura hipóxica.

Essa solução está presente nos aparelhos de anestesia da GE Healthcare: Carestation 650, Carestation 750, Avance CS2 e Aysis.

No exemplo 1, para um FGF total de 6 L/min e 4,8 L/min de O2 no circuito, a máquina sugere como alvo 1,6 L/min de O2 para manter uma guarda hipóxica de FiO2 25%.

Já no exemplo 2, para um FGF total de 2 L/min e 1,6 L/min de O2 no circuito, é sugerido como alvo 0,7 L/min para manter uma guarda hipóxica de FiO2 25%. E, no exemplo 3, para um FGF total de 0,8 L/min e 0,56 L/min de O2, sugere-se como alvo 0,36 L/min para manter uma guarda hipóxica de FiO2 25%.

VOCÊ SABIA?

A quantidade de gás que entra no sistema de evacuação de gases é determinada pelo fluxo total de gases frescos (FGF).

Quando o FGF excede o necessário para o paciente, os gases excedentes entram no sistema de evacuação, contaminando o meio ambiente. Por esse motivo, com a utilização de fluxos mais baixos é possível minimizar o impacto ambiental, além de economizar o uso do agente anestésico.

ECOFLOW VERSUS FIO2 SEGURA

Com o EcoFlow, é possível ajustar o O2 necessário ao metabolismo do paciente de acordo com a “FiO2 segura”, sendo monitorado o circuito do paciente e o sistema circular para determinar a precisão de O2 no FGF para atingir o valor ideal para o metabolismo.

Essa ferramenta considera a mistura atual de gases no circuito, incluindo agentes anestésicos e define um sinalizador no FGF total para mostrar o quanto de O2 precisa ser entregue.

A FiO2 segura pode ser ajustada entre 25% e 50%.

SAIBA COMO ESSA SOLUÇÃO PODE OTIMIZAR OS CUSTOS COM SEGURANÇA AO PACIENTE

• Possibilita o ajuste da concentração apropriada de O2 para evitar a entrega de mistura hipóxica ou excessiva para o paciente;

• Possibilita a redução do fluxo de gases sem comprometer a qualidade da entrega de agentes inalatórios para uma economia potencial e proteção ambiental;

• Possibilita que equilibre o FGF com a FiO2 para estarem de acordo com os indicadores de segurança;

• Ajuda os médicos anestesistas a amenizar os riscos de complicação pulmonar pós-operatória e reduzir os riscos de complicações causadas por falhas na entrega dos gases;

• Cuidados sob medida para os pacientes em anestesia;

• Ajuda a reduzir o gasto com agentes anestésicos;

• Ajuda a proteger os investimentos;

• Ajuda na economia dos gases.

Mediante o cenário atual que estamos vivendo, onde o consumo com medicamento anestésico está elevado e, a SBA recomenda o seu uso racional, o Ecoflow é uma solução que pode contribuir muito para amenizar essa situação, evitando o consumo excessivo desnecessário.

E, como já visto, a redução no uso de agentes anestésicos, irá impactar tanto na economia hospitalar e poluição ambiental quanto na preservação da segurança do paciente.

Outro ponto importante, com a utilização da anestesia de baixo fluxo, é a redução da poluição do meio ambiente.

Para saber mais sobre essa solução, entre em contato!

REFERÊNCIAS BIBLIOGRÁFICAS

  • MARQUES, F. P. Análise do perfil dos consumos de gases frescos e anestésicos, durante a anestesia geral, em circuito fechado. Projeto de Mestrado Integrado em Engenharia Biomédica Coimbra, 2008.
  • BRENNER, C. Q. Q; FELIX, E. A. Perfil de consumo e impacto econômico dos anestésicos inalatórios na última década no Serviço de Anestesiologia e Medicina Perioperatória do Hospital de Clínicas de Porto Alegre. Serviço de Anestesiologia e Medicina Perioperatória (SAMPE) do Hospital de Clínicas de Porto Alegre. Departamento de Cirurgia da Universidade Federal do Rio Grande do Sul (UFRGS)
  • FUTIER et al. Perioperative Positive Pressure Ventilation: An Integrated Approach To Pulmonary Care. Anesthesiology. 2014. 121:400-8
  • HUANG, J. Enhanced Recovery After Surgery (ERAS) Protocols and Perioperative Lung Protection. J Anesth and Perioper Med. 2014. 1: 50-56

LINKS

A evolução da anestesia e o desenvolvimento de novos medicamentos e aparelhos deram condições para que as novas técnicas cirúrgicas, que provavelmente seriam letais no passado, hoje sejam realizadas com segurança.

Em anestesiologia, a busca pela segurança e qualidade do controle tanto do adormecer quanto do despertar do paciente, bem como no alívio da dor durante o procedimento cirúrgico, se tornam possíveis devido ao aprimoramento das técnicas, dos medicamentos e das inovações de monitoramento.

Embora sejam comprovadas e amplamente difundidas, as vantagens oferecidas pela técnica do fluxo basal de gases, a propagação do método como rotina entre as técnicas anestésicas, encontra obstáculos diversos, primeiramente pela divergência no conceito de fluxo baixo de gases ou mínimo fluxo de gases e por ser considerada por muitos como complexa na execução.

Vamos entender mais sobre esse assunto e mudar de opinião?

VOCÊ SABE O QUE SIGNIFICA ANESTESIA?

1) Consiste em um “estado não natural, em que a capacidade de reter memória, bem como de discernir e reagir a estímulos lesivos é controlada de forma reversível por meio de uma variedade de medicações e técnicas.”

2) É o estado de total ausência de dor e outras sensações durante uma cirurgia, exame diagnóstico ou curativo. Ela pode ser geral, isto é, para o corpo todo; ou parcial, também chamada regional, quando apenas uma região do corpo é anestesiada.

COMO SURGIU A ANESTESIA COM BAIXO FLUXO?

O nascimento da anestesia cirúrgica moderna foi marcado pelo médico inglês John Snow. Dr. Snow ficou muito conhecido por seu trabalho epidemiológico a respeito da cólera e pela introdução da medicina higiênica — mas também poderia ser indicado como o primeiro anestesiologista de verdade.

No final do século XIX, John Snow iniciou a anestesia inalatória com baixo fluxo de gases com a intenção de reduzir o consumo e evitar a poluição dos anestésicos, conseguindo diminuir bastante o odor do clorofórmio e do éter nas salas de cirurgias.

Ele criou um aparelho experimental de circuito fechado, no qual o paciente respirava oxigênio enquanto o dióxido de carbono exalado era absorvido por hidróxido de potássio.

Como era seu estilo, aprofundou-se no estudo e na compreensão dos anestésicos voláteis. Ao contrário de outros médicos anestesistas, Dr. Snow não estava preocupado com o seu papel e seu possível legado para a medicina, mas com a segurança e a administração correta da anestesia.

Sua atitude calma e atenta na sala de cirurgia — e o foco no bem-estar do paciente, e não no seu orgulho — é um modelo a ser imitado.

John Snow, médico inglês, foi um dos primeiros médicos a estudar e calcular as dosagens para a utilização de éter e clorofórmio enquanto anestésicos cirúrgicos, permitindo que os pacientes submetidos a procedimentos cirúrgicos tivessem desconfortos e dores atenuados. Chegou, inclusive, a ministrar pessoalmente clorofórmio à Rainha Vitória durante o parto de dois dos seus nove filhos: Leopold, em 1853 e Beatrice, em 1857. Tal fato levou a anestesia obstétrica a uma maior aceitação pública.

O QUE É ANESTESIA COM BAIXO FLUXO?

A técnica de anestesia inalatória com baixo fluxo consiste na redução do uso de gases e agentes anestésicos durante um procedimento cirúrgico, ou seja, utilizar apenas o necessário para que o paciente seja anestesiado.

Sua utilização ajuda na previsão do volume anestésico usado durante o ato anestésico, além da economia dos agentes.

As anestesias de baixo fluxo e de fluxo mínimo se caracterizam pela vazão de pequenos volumes no fluxo de gás fresco em litros por minuto alimentando o circuito de gases do equipamento de anestesia.

O fator diferencial é que o fluxo de gás fresco é claramente menor que o volume-minuto respiratório do paciente. 

Em 1954, Foldes estabeleceu o conceito de baixos fluxos como sendo o fluxo de admissão de gases (FAG) de 1 L.min-1. Já, Virtue, em 1974, estabeleceu outro importante conceito de fluxos mínimos em que o FAG era de 0,5 l.min-1.

anestesia com baixo fluxo

VOCÊ SABIA?

Você sabia que a redução do fluxo de gás fresco abaixo de 1L/min em circuito fechado está associada a vários benefícios durante a fase de indução anestésica inalatória?

Dentre eles, se torna possível administrar volumes adequados para o paciente ser anestesiado, com a otimização de todo o vapor anestésico gerado pelo sistema de vaporização e sem o desperdício para um sistema de exaustão ou eliminado na própria sala.

O sistema circular fechado durante a manutenção anestésica permite a reinalação quase total de todos os gases e vapores expirados, com exceção do CO2, que é absorvido pela cal sodada.

POR QUE UTILIZAR?

Dentre os benefícios do uso da prática de anestesia com fluxo basal de gases frescos, podemos destacar:

  1. Conserva a umidade e temperatura das vias aéreas
  2. Conserva o calor corporal do paciente
  3. Promove a redução na poluição do ambiente
  4. Permite uma melhor previsão do volume anestésico utilizado
  5. Otimiza o consumo de agentes anestésicos inalatórios
  6. Segurança para o paciente
  7. Reduz o risco das complicações pulmonares no pós operatório
  8. Melhor recuperação do paciente
  9. Possibilita uma melhor monitorização dos parâmetros fisiológicos do paciente
  10. Reduz o custo anual com gases e agentes anestésicos para a instituição.

No estudo de BILGI et al. podemos verificar que a função respiratória na técnica anestésica de baixo fluxo é melhor quando comparada à de alto fluxo. E, também, de acordo com FONSECA et al. nota-se que variações no consumo de oxigênio podem indicar alterações diretas no débito cardíaco.

Desta forma, com a técnica de fluxo basal de gases, o anestesiologista mantém a fisiologia corporal e controla com facilidade a função pulmonar e cardiovascular.

Alguns estudos comprovam que há uma redução significativa nos custos anuais de agentes anestésicos com o uso de baixo fluxo. Por exemplo, uma redução de 3L/min para 1L/min resulta em uma economia de aproximadamente 50% no consumo de agentes anestésicos inalatórios.

Segundo o estudo de BORGES e SARAIVA, os principais agentes anestésicos inalatórios foram testados na técnica de baixo fluxo e, excluindo as particularidades voláteis de cada um, foi possível verificar um menor consumo dos gases durante a indução anestésica.

Dessa forma, podemos concluir que a técnica de anestesia com baixo fluxo de gases durante a indução anestésica traz muitos benefícios tanto para o paciente quanto para a instituição hospitalar.

Em destaque, a possibilidade de maior segurança e melhor recuperação para o paciente no pós operatório bem como uma economia significativa no custo anual com os agentes anestésicos.

A MA Hospitalar representa a GE Healthcare — empresa líder global em tecnologia médica, oferecendo um amplo portfólio de soluções completas para o melhor atendimento ao paciente. Dentre elas, destacam-se os aparelhos de anestesia que permitem realizar a técnica de baixo fluxo durante um procedimento cirúrgico.

Os modelos: Carestation 650, Carestation 750, Avance e Aisys são soluções completas em anestesia que possuem uma ferramenta para a realização dessa técnica com qualidade e segurança tanto para o médico anestesista quanto para o paciente.

Gostaria de saber mais sobre o assunto e sobre nossas soluções? Fale conosco!

REFERÊNCIAS BIBLIOGRÁFICAS

  • BORGES, M. M. J. SARAIVA, R. A. Sequência de Fluxo de Gás Fresco para Início da Anestesia com Baixo Fluxo: Aplicação Clínica do Estudo Teórico de Mapleson. Revista Brasileira de Anestesiologia. Vol. 52, Nº 2, Março – Abril, 2002
  • FONSECA, N. M. LEÃO, D. G. FÉLIX, D. G. FONSECA, G. G. MANDIM, B. L. S. RUZZI, R. A. MARTINS, N. A. COSTA, P. R. R. M. Anestesia com fluxo basal de gases (Quantitativa). Revista Med Minas Gerais. Vol. 21(4 Supl 4): S15-S26. 2011.
  • BRATTWALL, M; MD, PhD. STOMBERG, M. W; PhD. HESSELVIK, F; MD, PhD. JAKOBSSON, J; MD, PhD. Brief review: Theory and practice of minimal fresh gas flow anesthesia. Can J Anesth/J Can Anesth. Vol. 59:785–797. 2012.
  • BILGI, M; GOKSU, S; MIZRAK, A; et al. Comparison of the effects of low-flow and high-flow inhalational anaesthesia with nitrous oxide and desflurane on mucociliary activity and pulmonary function tests. Eur J Anaesthesiol. Vol. 28: 279-83. 2011.
  • BENGTSON, J. P. SONANDER, H. STENQVIST, O. Comparison of costs diferente anaesthethic techniques. Acta Anaesth. Vol. 32:33-2. Scand, 1988.
  • COTTER, S. M. PETROS, A. J. et al. Low flow anaesthesia. Practice, cost implications and acceptability. Anaesthesia. Vol. 46: 1009-1012, 1991.
  • FEISS, P. DEMONTOUX, M. H. COLIN, D. Anaesthetic gas and vapor saving with minimal flow anaesthesia. Acta Anaesthesiol. Belg. Vol. 41: 249-251, 1990.
  • Ortega RA, Mai C. History of anesthesia. In: Vacanti CA, Sikka PK, Urman RD, et al., eds. Essential Clinical Anesthesia. Cambridge: Cambridge University Press; 2011:1–6